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Abstract: Outliers are typically identified using frequentist methods. The data are classified as “out-
liers” or “not outliers” based on a test statistic that measures the magnitude of the difference between
a value and the majority part of the data. The threshold for a data value to be an outlier is typically
defined by the user. However, a subjective choice of the threshold increases the uncertainty associated
with outlier status for each data value. A cellwise outlier detection algorithm named FuzzyHRT is
used to automate the editing process in repeated surveys. This algorithm uses Bienaymé–Chebyshev’s
inequality and fuzzy logic to detect four different types of outliers resulting from format inconsis-
tencies, historical, tail, and relational anomalies. However, fuzzy logic is not suited for probabilistic
reasoning behind the identification of anomalous cells. Bayesian methods are well suited for quanti-
fying the uncertainty associated with the identification of outliers. Although, as suggested by the
literature, there exist well-developed Bayesian methods for record-level outlier detection, Bayesian
methods for identifying outliers within individual records (i.e., at the cell level) remain unexplored.
This paper presents two approaches from the Bayesian perspective to study the uncertainty associ-
ated with identifying outliers. A Bayesian bootstrap approach is explored to study the uncertainty
associated with the output scores from the FuzzyHRT algorithm. Empirical likelihoods in a Bayesian
setting are also considered for probabilistic reasoning behind the identification of anomalous cells.
NASS survey data for livestock and major crop yield (such as corn) are considered for comparing the
performances of the two proposed approaches with recent cellwise outlier methods.

Keywords: anomaly identification; Bayesian bootstrap; empirical likelihood; fuzzy logic; predictive
distribution; uncertainty

1. Introduction

Agricultural data acquired through surveys are inherently complex, often character-
ized by skewed distributions, multivariate relationships and spatio-temporal dynamics.
This complexity in the nature of agricultural data along with imperfect data collection pro-
cesses can lead to anomalies at the entry (cell) level data. The presence of anomalous values
in a dataset can affect the analyses based on these data, e.g., introducing bias to the mod-
eled estimates or forecasts. The United States Department of Agriculture (USDA) National
Agricultural Statistics Service (NASS) has implemented a semi-automated revision process
to improve the accuracy of the data acquired through surveys. The current semi-automated
system detects cellwise anomalies (Figure 1, graph on the right) that are subsequently
corrected manually. Even though the system uses automated decision rules based on if-else
conditions designed by experts in agriculture, it still requires human intervention at several
levels. Recently, NASS has been investigating alternative approaches to modernize its
anomaly detection system and is extending its traditional editing techniques [1] with novel,
more accurate, flexible and objective methodologies.
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Figure 1. Graphical illustration of two datasets with anomalies. On the left, anomalies at the record-
level are represented by rows colored in red, and on the right, anomalies at the data-entry level (that
could occur one or several times within a multivariate record) are represented by cells colored in red.

Historically, researchers have addressed outliers from two perspectives. From the first
perspective, an outlier is typically defined as an observation generated by a mechanism
different from the one that produced the majority of observations in a dataset. While
this assumption was previously used by [2–4] to specify a model for generating outliers,
it was Freeman who presented in 1980 the definition of outlier as “an observation that
has not been generated by the mechanism that generated the majority of observations
in the dataset” [5]. Alternatively, from the second perspective, all data are considered
observations generated by a single mechanism. A (statistical) model is assumed to fit
the observed data and the outliers arise from the model outputs. From this perspective,
the “outlier” status of the data is typically determined through inferences on standardized
residuals under the assumed model. After the records are investigated for influential points,
they are classified either as outliers or regular cases based on a score variable. However,
algorithms for detecting cellwise outliers (i.e., anomalous cells within a record) have been
overlooked in the literature from both perspectives until recent developments [6–8].

In addition, primarily focusing on record-level anomalies, most outlier detection meth-
ods are typically developed under the frequentist framework. A variety of algorithms
developed under the frequentist framework generate scores for each individual record
and use these scores to detect anomalies at the record-level [9–13]. The Detect-Deviating-
Cells (DDC) method [8] is known as the first method developed to detect cellwise outliers
in multivariate datasets by accounting for the correlations among variables. This method
assumes normality but does not consider stratification or historical information. Due to the
advances in computational power and tools, more meaningful criteria for outlier detection
in complex multivariate data situations have been developed. For example, it is more intu-
itive to apply a degree of belief that a cell in a multidimensional dataset is an outlier rather
than simply classifying that cell as an outlier. This could be achieved through Bayesian
methods where similar to the frequentist framework, outliers are typically identified by
analyzing random errors under a given probabilistic model. However, under the Bayesian
paradigm, outliers are detected through the analysis of posterior distributions.

The interest in Bayesian procedures for outlier detection has increased in recent
decades. A review of the probabilistic methods for record-level outlier detection in a
Bayesian setting under a linear model is given in [14]. The authors classify these methods
into two groups: (1) methods that investigate the predictive density of the response variable
and (2) methods that investigate the posterior (predictive) probabilities of unobserved
residuals. In [15], the outlier scores are transformed into probabilities, and two approaches
are presented. The first considers a logistic sigmoid as a posterior distribution and estimates
its parameters using the outlier score data. The second derives the posterior probabilities
by assuming a mixture of exponential and Gaussian distributions for the score data. For
completeness, we also mention the following Bayesian contributions on record-level outlier
detection. Considering a univariate linear model in [16], the authors propose using the
posterior distribution of the squared norm of the realized errors to identify anomalous
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records. Later, in [17], the approach is extended to a multivariate linear model using Bayes
factors to detect outliers. In [18], general measures (i.e., Kullback–Leibler (KL), chi-square,
L1-divergence) are used to study, via simulations, how individual observations can affect
the distribution of the response given the covariates. The authors found that KL and
chi-square measures were monotonic on L1 divergence. They recommended L1 divergence
as a diagnostic measure due to the easiness of its interpretation [18]. Geisser’s work on
the predictive density of one observation given the rest of the data is worth mentioning
here as well [19–22]. However, none of these previous works has addressed the Bayesian
identification of anomalous data entries within a record (i.e., cellwise outliers).

Despite the extensive literature on outlier detection, publications for cellwise outlier
detection are quite sparse [6–8]. While most of the algorithms are developed to detect an
anomaly at a record level, classical record-level assumptions are seldom satisfied when
an anomaly in data collected through surveys occurs at one (or several) component(s) of
a record (as illustrated in Figure 1). Also, most of the existing algorithms proposed for
identifying cellwise outliers are often designed without considering characteristics of the
data, i.e., missing values, skewed marginal distributions, and spatio-temporal dynamics.
Sartore et al. [23] introduced an outlier detection approach based on robust estimation
methods and fuzzy logic. This approach is applicable to sparse or stratified datasets and
can leverage additional information when historical data are available. Implementation of
the FuzzyHRT algorithm has automated the editing process for repeated surveys at NASS.

The FuzzyHRT algorithm uses the Bienaymé–Chebyshev’s inequality [24] which is
suitable for nonparametric and empirical inferences. The only assumption made about the
distribution of the data is that the first and second moments exist, which could be estimated
empirically. Then, for a random variable X with distribution function FX(x) and a location
parameter estimator

µ̂δ = arg min
µ∈R

∫
|X− µ|δdFX ,

the Bienaymé–Chebyshev’s inequality is defined for any δ ≥ 1 and ε ∈ R as

Pr(|X− µ̂δ| ≥ |ε|) ≤ min

1,
E
[
|X− µ̂δ|δ

]
|ε|δ

. (1)

In the special case of δ = 2, Equation (1) produces the classical Chebyshev’s inequality,

Pr(|X− µ̂2| ≥ |ε|) ≤ min
{

1,
Var[X]

|ε|2

}
,

where µ̂2 = E[X]. Fuzzy logic is successively applied to detect four different types of
cellwise outliers resulting from format inconsistencies and historical, tail, and relational
anomalies. Nonetheless, fuzzy logic is not suited for the probabilistic reasoning behind
the identification of anomalous cells. Therefore, Bayesian methods are preferred as better
suited methods for quantifying the uncertainty associated with the identification of cellwise
outliers. In this paper, two novel Bayesian methods for detecting outliers at the cell level
are proposed. Both methods are based on the theory of empirical likelihoods [25], which
provides a nonparametric framework for inference without making assumptions on the
distribution of the data. First, a Bayesian bootstrap approach (hereafter referred to as
bootstrap approach) is proposed to mitigate the uncertainty associated with the output
scores from the FuzzyHRT algorithm [23]. Second, empirical likelihood under a Bayesian
framework [26] (hereafter referred to as the empirical likelihood approach) provides a
probabilistic reasoning for identifying outliers at the cell level.

The rest of the paper is structured as follows. In Section 2, we give a brief review of
the FuzzyHRT algorithm and set up the problem. The bootstrap approach is presented
in Section 3. The empirical likelihood approach is introduced in Section 4. Results from a
controlled simulation study using NASS survey data for livestock and crops to assess the
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performances of the two proposed approaches are presented in Section 5. Our concluding
remarks are presented in Section 6.

2. Materials and Methods
2.1. Brief Background on the FuzzyHRT Algorithm

The FuzzyHRT algorithm [23] identifies four types of anomalies occurring at a data
entry (or cell), each resulting in a specific type of outlier. The first anomaly type con-
sists of erroneous data with format inconsistencies (B), also known as bit-flip errors. The
second type refers to historical anomalies (H), i.e., data entries that are large deviations
from previously reported data. The third type is traditionally known as a distribution-tail
anomaly (T), i.e., univariate outliers. The fourth type of cell anomaly detected by the
FuzzyHRT algorithm involves the breaking of linear relationships (R) among multiple vari-
ables, i.e., deviations from typical multivariate relationships. In this paper, we concentrate
on historical, tail, and relational anomalies and disregard bit-flip errors. In fact, these errors
are often corrected automatically by modern hardware [27,28], and thus, they are quite rare
in practice.

It is possible that a historical anomaly can be a tail anomaly, or vice versa. It is also
possible that a relational anomaly can be also a tail or historical, or both tail and historical
anomaly. However, while an anomaly could be of historical, tail, relational, or a combination
of the three, each type of anomaly is identified using a specific approach. The FuzzyHRT
algorithm utilizes regression-like methodologies including time series, linear regression,
and median estimation procedures at the cell level to produce standardized residuals
associated with historical (H), tail (T), and relational (R) anomalies for each cell (i, j). First,
in [23], an ARIMA(1, 0, 0) provides a prediction x̂[H]

ij that minimizes the mean absolute
error (MAE) with respect to xij. However, the authors also discussed extensions based
on more sophisticated models that are better suited for longitudinal analyses or other
types of temporal data. Second, the stratum median of each variable j is used to compute
prediction x̂[T]ij . This prediction is constant within a stratum but can change across the

sample. Third, a linear regression model is fitted to compute a prediction x̂[R]ij using the
other (ℓ ̸= j) normalized variables as predictors. Sartore et al. [23] also discusses the use of
monotone link functions to transform skewed data before performing regression analyses.
In this paper, residuals are denoted by

ε
[k]
ij = xij − x̂[k]ij ,

where k ∈ {H, T, R} for historical, tail, and relational type anomalies.
The Chebyshev’s inequality and its robust extension, i.e., Bienaymé–Chebyshev’s in-

equality, is used in [23] to score the standardized residuals without imposing distributional
assumptions. In particular, the inequality for a random variable Xij − x̂[k]ij is expressed in

terms of a transformed realization of errors, ε
[k]
ij ,

Pr
(∣∣∣Xij − x̂[k]ij

∣∣∣ > g
(

ε
[k]
ij

))
< min

{
1, g

(
ε
[k]
ij

)−δ
E

[∣∣∣Xij − x̂[k]ij

∣∣∣δ]},

where g : R→ R+ ∪ {0} is a generic function of ε
[k]
ij with nonnegative codomain, and the

scalar δ ≥ 1 represents the order of the absolute moment. In [23], δ = 1 when the least
absolute residuals are used for computing the predictions, and δ = 2 when the least squared
errors are used instead. For the specific choice of g(ε) = |ε|, the score s[k]ij is defined as

s[k]ij := min

{
1,

∣∣∣ε[k]ij

∣∣∣−1
E

[∣∣∣Xij − x̂[k]ij

∣∣∣δ]1/δ
}

.
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In this paper, the three separate scores are computed based on the standardized resid-
uals, i.e., s[H]

ij for historical anomalies, s[T]ij for distribution-tail anomalies, and s[R]ij for
relational anomalies.

The scores under consideration (i.e., associated with the historical, tail, and relational
anomalies) are combined into one final score. The concept of triangular norms (or t-norms)
from the fuzzy logic literature is used to derive the matrix of final scores,

S∗ = {s∗ij, ∀i = 1, . . . , n, ∀j = 1, . . . , p}, (2)

where s∗ij is the score corresponding to the data entry for variable j in record i and takes
values in [0, 1]. In general, each final score summarizes the evidence for a data entry to be
regular (and thus, the larger the final scores the more regular the data entry is).

One can classify the observed data values as outliers or not using the 100θ empir-
ical percentile of the final scores s∗ij, ∀i = 1, . . . , n, ∀j = 1, . . . , p produced through the
FuzzyHRT algorithm as a threshold; θ is a user-provided level of contamination in the
observed dataset X. The subjective choice of the data-contamination level, θ ∈ (0, 1),
increases the uncertainty associated with the status of data entries to be either regular
or outliers. Typically, a degree of uncertainty is associated with each individual score,
which contributes through a fuzzy logic process (used by the FuzzyHRT algorithm) to the
uncertainty associated with the final score s∗ij. These uncertainties further translate into the
uncertainty associated with the outlier status of its respective value xij.

Remark 1. T-norm functions
A t-norm function satisfies the commutative, monotonic, associative, and identity properties.

A general t-norm function maps the unit square in a Cartesian plane to the closed unit interval [0, 1]
in R, i.e., d : [0, 1]× [0, 1] → [0, 1]. T-norm functions are used recursively to combine the three
anomaly scores into a final one. In this paper, we use two t-norm functions, the product t-norm
denoted by d1 (i.e., d = d1) and the minimum t-norm denoted by d2 (i.e., d = d2). FuzzyHRT uses
the product t-norm function,

d1(z1, z2) = z1z2, ∀z1, z2 ∈ [0, 1].

The Bayesian approach based on the empirical likelihood presented in Section 4 uses the minimum
t-norm function,

d2(z1, z2) = min(z1, z2), ∀z1, z2 ∈ [0, 1].

The final score s∗ij for the (i, j)th entry is computed based on historical, relational and tail anomaly
scores as

s∗ij = d
(

s[H]
ij , d

(
s[R]ij , s[T]ij

))
,

where d = d1 for the FuzzyHRT algorithm and d = d2 for the empirical likelihood approach. More
details on fuzzy logic and probabilistic inequalities are given in Appendix A of [23].

2.2. Problem Setup

Let X denote an observed dataset with outliers, consisting of n records and p variables,
and let s∗ = vec(S∗), where S∗ is defined in (2) as the matrix of scores produced from X
using the FuzzyHRT algorithm [23]. Let Q̂θ denote the 100θ empirical percentile of the
scores s∗, where θ is a user-provided level of contamination in X. Q̂θ partitions the scores s∗

into two groups corresponding to regular data and outliers, and it is used as a cut-off when
determining the outlier status of a cell xij in X. A subjective choice of a contamination
level θ increases the uncertainty associated with the identification of cellwise outliers. Two
Bayesian approaches are considered to mitigate this uncertainty.

The goal is to classify the data entry, xij, into regular data or outlier and to study the
uncertainty associated with this process. First, a bootstrap approach is used to obtain the
conditional distribution of Q̂θ given the scores. Second, the empirical likelihood approach at
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the cell level is considered under the Bayesian perspective for probabilistic reasoning behind
the identification of anomalous cells. In the second approach, the unknown contamination
parameter θ ∈ (0, 1) is treated as a random variable. Furthermore, in the latter approach,
posterior inferences are conducted based on the residuals from the original data at each
individual cell, xij.

3. A Bayesian Bootstrap Approach

Let Hij denote an indicator random variable for an outlier cell (i, j),

Hij = 1 ⇐⇒ xij is outlier

Hij = 0 ⇐⇒ xij is regular.
(3)

In this section, we focus on inferences about the empirical distribution of the scores pro-
duced by FuzzyHRT, S∗, and explore the uncertainty associated with their 100θ empirical
percentile Q̂θ . Hereafter, in this section, the scores S∗ are thought of as a vector s∗ = vec(S∗)
with length N = n× p. Then, conditions in (3) for partitioning the data take the form,

Hij = 1 ⇐⇒ 0 ≤ s∗ij ≤ Q̂θ ;

Hij = 0 ⇐⇒ Q̂θ ≤ s∗ij ≤ 1.
(4)

To obtain the empirical distribution of s∗, let ω denote a parameter vector of length M
whose components are probabilities associated with M distinct values of the scores s∗,

ω = (ω1, . . . , ωM)⊤ ∈ SM−1,

where M ≤ N and SM−1 denotes the M− 1 dimensional set of unit probability simplex
for s∗ [25]. These probabilities satisfy the two following constraints:

ωm ≥ 0, ∀m = 1, . . . , M, and
M

∑
m=1

ωm = 1.

A noninformative Dirichlet prior is selected for ω = (ω1, . . . , ωM)⊤,

ω ∼ 1SM−1(ω)×
M

∏
m=1

(ωm)
0 × c = 1SM−1(ω)× c, (5)

where c is the normalizing constant. Assuming that the nm ∈ {0, 1, . . . , N} scores produced
from FuzzyHRT are associated with their respective probability ωm, for m = 1, . . . , M, one
can write the likelihood as

L(ω) = Pr(s∗|ω) ∝
M

∏
m=1

(ωm)
nm .

Incorporating the information provided from the final scores s∗ defined in (2), we obtain
the posterior distribution of ω given s∗,

ω|s∗ ∼ 1SM−1(ω)×
M

∏
m=1

(ωm)
nm × c, (6)

which is a Dirichlet(n1, . . . , nM).

Remark 2. If nm = 1, ∀m ∈ {1, . . . , M}, then M = N.

The Bayesian bootstrap for the 100θ percentile is based on a resampling scheme
performed B times as follows. To obtain a sample for the random variable ω|s∗ based on
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its empirical posterior distribution, first, a sample of size M is drawn from the uniform
distribution with support in (0, 1), i.e., um ∼ Uniform(0, 1), for any m = 1, . . . , M. Then,
for all m ∈ {1, . . . , M}, the ωm|s∗ is computed,

ωm|s∗ =
log(um)

∑M
h=1 log(uh)

, (7)

resulting in a realized sample (ω1|s∗, . . . , ωM|s∗). This sample provides probabilities for
the vector of final scores s∗. For practical reasons, without loss of generality, one can assume
that the condition of Remark 2 is true, i.e., nm = 1 (and hence, M = N), to construct a
Monte-Carlo sample ω|s∗ of size N.

After sorting the scores, the cumulative distribution of s∗|ω is empirically evaluated
at s∗(h), for all h = 1, . . . , N, as the sum of the posterior probabilities in (7) that are associated
with all scores s∗(m) such that m ≤ h,

F̂s∗ |ω(s
∗
(h)|ω) = ∑

m≤h
ωm|s∗.

Then, the value of Q̂(b)
θ , for all b ∈ {1, . . . , B}, is obtained by solving the following equation:

F̂s∗ |ω

(
Q̂(b)

θ |ω
)
= θ,

or similarly
Q̂(b)

θ = F̂−1
s∗ |ω(θ). (8)

This results in a sample of size B = 1000 constructed using the bootstrapped statistics in (8).
The mean (and other summary statistics) of the Q̂(b)

θ were considered when determining
the outliers based on the scores produced by the FuzzyHRT algorithm.

4. A Bayesian Testing Approach Based on Empirical Likelihoods

In this approach, empirical likelihoods at the cell level are used to study the posterior
distribution of the indicator random variable Hij defined in (3) given the data xij. Hij
describes the outlier status of xij (i.e., cell (i, j)), where j = 1, . . . , p and i = 1, . . . , n.
Specifically, we construct the distribution of the random variable Hij|εij, where

εij =
(

ε
[H]
ij , ε

[R]
ij , ε

[T]
ij

)⊤
(9)

and ε
[k]
ij are standardized residuals provided by the FuzzyHRT algorithm for each anomaly

type k ∈ {H, R, T}. The distribution of εij|θ, Hij is used to evaluate Pr(Hij|εij).
In this setting, different from the bootstrap approach, the level θ ∈ (0, 1) of data

contamination is unknown and treated as a random variable. It is reasonable to specify the
conditional distribution for θ given Hij,

θ|Hij ∼ Uniform

(
1− Hij

2
,

2− Hij

2

)
. (10)

This specific choice of distribution for θ|Hij makes it possible to simplify the successive
calculations of the posterior in (12). A noninformative (Bernoulli) hyperprior is adopted
for the outlier status random variable Hij,

Pr(Hij = 0) = Pr(Hij = 1) = 0.5, (11)

at each cell (i, j).
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One can easily obtain the posterior distribution of Hij|εij,

Pr(Hij|εij) ∝ Pr(Hij)
∫

Pr(εij|θ, Hij)Pr(θ|Hij)dθ, (12)

where θ is integrated out. Incorporating the hyperprior (11) and Equation (10) in (12), one
obtains the conditional distribution of Hij|εij,

Pr(Hij|εij) ∝
∫ (2−Hij)/2

(1−Hij)/2
Pr(εij|θ, Hij)dθ, (13)

where the vector εij is defined in (9). This distribution is of an unknown form. There-
fore, Pr(εij|θ, Hij) is evaluated using the empirical likelihood [25] defined as follows:

L(θ) := Pr(εij|θ, Hij) = max
wij∈R3

33 ∏
k∈{H,R,T}

w[k]
ij : ∑

k∈{H,R,T}
w[k]

ij q
(

ε
[k]
ij , θ

)
= 0,

θ ∈
[

1− Hij

2
,

2− Hij

2

]
,

w[k]
ij ≥ 0, ∀k ∈ {H, R, T},

∑
k∈{H,R,T}

w[k]
ij = 1

, (14)

where the terms q
(

ε
[k]
ij , θ

)
, for k ∈ {H, R, T}, i = 1, . . . , n, and j = 1, . . . , p, control the shape

of the estimating equation.
Because the empirical likelihood in (14) does not provide a closed-form analytical

expression for any given values of θ, its evaluation is performed by solving an optimiza-
tion problem. However, the direct optimization of (14) is computationally challenging,
and hence, the theory of duality [29,30] is used to simplify the optimization problem. There-
fore, the quantification of Pr(εij|θ, Hij) is achieved by maximizing the following function:

G(wij, λ1, λ2) = ∑
k∈{H,R,T}

log w[k]
ij +λ1−λ1 ∑

k∈{H,R,T}
w[k]

ij +λ2 log θ−λ2w[κ̂ij]
ij log ζ̂

[κ̂ij ]

ij (15)

with respect to wij ∈ R3, where λ1 > 0 and λ2 > 0 are the Lagrange multipliers. The
optimization is achieved under the assumption that

∑
k∈{H,R,T}

w[k]
ij q

(
ε
[k]
ij , θ

)
= w[κ̂ij]

ij log ζ̂
[κ̂ij ]

ij − log θ,

where
κ̂ij = arg min

k∈{H,R,T}
log ζ̂

[k]
ij ,

and

ζ̂
[k]
ij =

Φ−1(0.995)

Φ−1(0.995) +
∣∣∣ε[k]ij

∣∣∣ ,

for any k ∈ {H, R, T}, where the notation Φ−1(0.995) denotes the 99.5% quantile from a
cumulative distribution function from the standard normal. By setting the first derivative



Stats 2024, 7 1252

of (15) with respect w[k]
ij to zero, one obtains a closed-form solution of the weights as a

function on the Lagrange multipliers:

ŵ[k]
ij =

1

λ1 − λ2 log θ + λ2w[κ̂ij]
ij log ζ̂

[κ̂ij ]

ij

, ∀k ∈ {H, R, T}.

The iterative algorithm to identify the optimal value of an empirical likelihood for a given θ,
uses λ1 = 3, and λ2 = 0 as initial values. After the weights are updated, the Lagrange
multipliers are updated using the Gauss–Newton method:

λ1 ← λ1 − 1 + ∑
k∈{H,R,T}

wk

λ2 ← λ2 − log θ + w[κ̂ij]
ij log ζ̂

[κ̂ij ]

ij .

This iterative algorithm stops when either convergence is reached or a maximum number
of iterations has been performed. Finally, the likelihood is computed based on (14),

Pr(εij|θ, Hij) = 33 ∏
k∈{H,R,T}

ŵ[k]
ij .

The integral in (13) is evaluated using classical quadrature methods. In this paper, the defi-
nition of Riemann’s integral is used to compute the posterior probabilities.

5. Simulation Study

As in [23], a controlled simulation study using four national surveys administered by
NASS is conducted to assess the performances of the proposed outlier detection approaches.
These national surveys provide a wide range of different agricultural scenarios (see Table 1
for a short summary). The first two surveys have been conducted for sheep-and-goat
and cattle inventories, and the last two on row-crop yields and cranberry production.
Usually, livestock surveys focus on the herd composition, while crop surveys collect
information on production and yields. Surveys under consideration were administered
between 2021 and 2022, and have sample sizes ranging between 218 and 21,154 and a
number of nonnegative continuous variables ranging between 3 and 49.

Table 1. Description of surveys used to evaluate the proposed methodology.

Survey Number of
Resposes

Number of
Variables Major Inquiries Scenario

Sheep and
Goat
Inventory

10,090 49

Sheep and/or goat
herd composition
(ewes, rams, lambs,
billies, nannies,
kids, etc.)

Many records;
two distinct
inventoriess of
aggregated part

Cattle
Inventory 21,154 18

Cattle herd
composition (cows,
bulls, calves, etc.)

Many records; one
inventory of
aggregated parts

Agricultural
Yield 1762 54

Expected yield and
acres of small grain
crops (i.e., barley,
wheat, oats)

Fewer records;
multiple crops

Cranberry
Production 218 3 Cranberry acres Very few records;

single crop

Because the four datasets shown in Table 1 have been manually edited, there are
no ground-truth labels on the anomaly status of each cell. Thus, cellwise outliers have
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been synthetically introduced in the four datasets to test the robustness of the proposed
algorithms across various scenarios. These scenarios have been developed to include
different types of outliers to better reflect the anomalies observed in the raw data. This
approach allowed us to flag and track anomalous values when evaluating the proposed
detection algorithms across a wide variety of potential data conditions.

The generative algorithm used in [23] has been applied to each dataset in Table 1 by
randomly replacing a few cells with anomalous values. Three specific modules synthe-
sizing historical, tail, and “relational” anomalies, respectively, are created. Each module
randomly selects 5% of the item responses. Half of these are replaced by multiplying
the current values by random factors in (0, 1), and the other half using random factors
in (1, 3). The random factors are generated from uniform distributions in intervals shown
in Table 2 (more specifically in columns 2 and 3). Shrinking and expansion ranges are
randomly selected with equal probability for each combination of anomaly type and dis-
similarity level. Therefore, two distinct datasets have been created for each survey. The
datasets marked as “high” contain anomalous cells that are more likely to be identified.
On the other hand, the datasets marked as “low” contain anomalous cells that are more
difficult to detect. The “high” and “low” distinctions describe the level of dissimilarity
between artificial anomalies and regular data.

In detail, historical anomalies are introduced by replacing a current value with its
historical one multiplied by a random factor. Tail and “relational” anomalies are produced
by multiplying original values with their respective random factors. “Relational” anomalies
are introduced only for the variables with stronger linear relationships (i.e., having a
correlation coefficient larger than 0.8). Hence, every record is equally likely to receive a
historical, tail, or “relational” anomaly for one or several of its item responses.

Table 2. Ranges of the multiplicative factors used to alter the original data for each module of the
generative algorithm for both higher (more obvious) and lower (less obvious) anomalies. Ranges for
up and down multipliers are randomly selected with equal probability.

Anomaly Type-Level Down Multiplier Range Up Multiplier Range

Tail-low 0.90–1.00 1.0-1.1
Historic-low 0.30–0.60 1.3—2.0
Relational-low 0.30–0.60 1.3–2.0
Tail-high 0.20–0.30 2.0–3.0
Historic-high 0.01–0.05 2.0–3.0
Relational-high 0.01–0.05 2.0–3.0

For the relational outliers, the dataset is organized such that each row represents a
record, and each column represents a field (item response). The dataset matrix may have
many missing data, resulting in a sparse matrix. It is natural to have a sparse matrix of
data collected from surveys, especially in the Agricultural Yield Survey, which includes
multiple crops. The respondents in different states and different strata would only have
certain types of crops but not all. Therefore, about 92% of the values in the Agricultural
Yield data matrix are missing.

5.1. Evaluations

Several accuracy measures have been computed according to the standards found
in the literature [31]. The confusion matrix is constructed by comparing the classification
results to the ground-truth labels as in a binary classification problem (where the two classes
are outliers and nonoutliers). This 2×2 matrix contains the counts of True Positives (TP) and
True Negatives (TN) in the main diagonal, and False Positives (FP) and False Negatives (FN)
in the off diagonal. TP refers to the number of true outliers correctly classified as such.
TN refers to the number of true regular data (nonoutliers) correctly classified as such. FP
refers to the number of regular data (nonoutliers) incorrectly classified as outliers. FN
refers to the number of outliers incorrectly classified as nonoutliers. The overall accuracy is
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computed as the ratio between the number of correct identifications divided by the total
number of units:

Overall accuracy =
TP + TN

TP + TN + FP + FN
.

The recall statistics are based on the ratios computed by conditioning on the ground truth
labels (for true outliers and truly regular data):

Recallout =
TP

TP + FN
(Sensitivity),

Recallreg =
TN

TN + FP
(Specificity).

The precision statistics are based on ratios computed by conditioning on the labels pro-
vided by two approaches proposed in Section 3 and 4. It shows the fraction of outlier
identifications that are truly outliers:

Precisionout =
TP

TP + FP
,

or the fraction of regular identifications that are truly regular:

Precisionreg =
TN

TN + FN
.

The proposed outlier detection methodologies have been evaluated for accuracy at the item
response level.

Table 3 shows the results based on the Bayesian bootstrap approach setting the thresh-
old as θ = 0.08. The overall accuracy ranges between 87% and 94%, the precision for de-
tected outliers ranges between 21% and 70%, and the recall of outliers ranges between 21%
and 63%. Table 4 shows the results based on the Bayesian empirical likelihood approach
without setting the threshold. At the item response level, the overall accuracy ranges
between 83% and 94%, the precision for detected outliers ranges between 10% and 71%,
and the recall of outliers ranges between 3% and 73%. Furthermore, the precision for
regular cells (i.e., for data entries that are not cellwise outliers) is larger than 87% for
both approaches. The recall for regular cells is larger than 93%. The change in contam-
ination level (from high to low) substantially affects the precision and recall of outliers,
with drops of 31–90%; however, the precision and recall for regular cells is quite stable
with differences of 1–6%. The overall accuracy has also shown a similar behavior with
differences of 2–8%. In general, both proposed methods perform better on datasets with
higher contamination levels.

Table 3. The cell-level overall accuracy, precision and recall for two labels (i.e., outliers and
nonoutliers) are computed on several synthetic datasets with two contamination settings and thresh-
old θ = 0.08 in Bayesian bootstrap approach. Sensitivity varies between 21% and 63%, and specificity
varies between 93% and 98%.

Survey Level Precision Precision Recall Recall Overall
Regular Outlier Regular Outlier Accuracy

Cranberry Low 0.893 0.483 0.962 0.233 0.867
Cranberry High 0.934 0.700 0.978 0.429 0.919
Cattle Low 0.932 0.278 0.938 0.260 0.880
Cattle High 0.955 0.551 0.961 0.513 0.923
Ag. Yield Low 0.963 0.327 0.944 0.433 0.914
Ag. Yield. High 0.976 0.478 0.957 0.625 0.937
Sheep/Goats Low 0.930 0.209 0.932 0.208 0.873
Sheep/Goats High 0.951 0.420 0.951 0.421 0.910
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Table 4. The cell-level overall accuracy, precision and recall for two labels (i.e., outliers and nonout-
liers) are computed on several synthetic datasets with two contamination settings in Bayesian empiri-
cal likelihood approach. Sensitivity varies between 3% and 73%, and specificity varies between 93%
and 98%.

Survey Level Precision Precision Recall Recall Overall
Regular Outlier Regular Outlier Accuracy

Cranberry Low 0.867 0.095 0.952 0.033 0.832
Cranberry High 0.925 0.567 0.968 0.347 0.902
Cattle Low 0.924 0.322 0.973 0.138 0.902
Cattle High 0.957 0.708 0.980 0.522 0.941
Ag. Yield Low 0.965 0.291 0.929 0.461 0.901
Ag. Yield High 0.982 0.437 0.940 0.731 0.928
Sheep/Goats Low 0.925 0.177 0.947 0.130 0.881
Sheep/Goats High 0.961 0.510 0.956 0.539 0.924

5.2. Comparisons

In this section, the performances of the four approaches are compared on two datasets
discussed above for the Agricultural Yields and Cattle Inventory. The first approach
described in Section 2.1 is the FuzzyHRT algorithm. Given a user-provided degree of
contamination θ = 0.08, one can classify the observed data values as outliers or not by using
the 100θ empirical percentile of the final scores produced through the FuzzyHRT algorithm.
The DDC method [8] is used as a second application with the same contamination threshold
set at θ = 0.08. DDC was the first method proposed in the literature to detect cellwise
outliers in multivariate datasets by accounting for the correlations among variables. The
third method applied is the Bayesian Bootstrap (with a contamination threshold set to θ =
0.08) and the fourth one is the Bayesian approach based on empirical likelihoods.

Figure 2 shows the overall accuracies of the four methods for each available state. All
datasets are split by states because the DDC drops all variables with more than 50% of
missing values by default, and it processes only the few that remain. However, the other
three methods are better suited for sparse matrices and use all available data entries.
Therefore, the accuracies of the four methods are compared at the state level. When applied
to the Agriculture Yield dataset, the DDC algorithm does not provide the overall accuracies
for six states due to the high level of sparseness. When applied to the Cattle Inventory
dataset, the DDC did not produce results for one state. In contrast, the other three methods
have identified anomalies in all states. Therefore, the results for the states where the DDC
can not detect outliers are excluded from the comparisons and are not shown in Figure 2.
The upper left panel (a) is based on the “low” Cattle Inventory dataset, and the upper
right panel (b) is based on the “high” one. The lower left panel (c) is based on the “low”
Agriculture yield dataset, and the lower right panel (d) is based on the “high” one.
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Figure 2. The state-level overall accuracies obtained from four methods applied to four synthetic
datasets.

As shown by the graphs, the Bayesian bootstrap approach and the Bayesian likelihood
approach have correctly detected more outliers on “high” Cattle Inventory dataset and have
provided generally higher accuracies for all states than the DDC and FuzzyHRT methods.
The Bayesian likelihood approach has the highest accuracies in 45 out of 50 states among
the four methods. As shown in the previous section, similar results are obtained when
comparing the bootstrap approach with DDC and FuzzyHRT methods. There are mixed
accuracy results throughout states for both Cattle and Agriculture Yield datasets with
a “low” level of contamination. Specifically, the Bayesian empirical likelihood approach
has performed better in 28 out of 50 states in the “low” Cattle dataset, while FuzzyHRT
has performed better in 15 out of 50 states. Similarly, the Bayesian empirical likelihood
approach performed better in 18 out of 50 states in the “low” Agriculture Yield dataset,
while FuzzyHRT performed better in 15 out of 50 states. These results are reasonable
because the percentage of historical outliers in the Cattle Inventory datasets is larger than
the percentage in the Agricultural Yield datasets.

6. Conclusions

In many applications, it is more helpful to check for anomalies at the data-entry level
rather than at the record level. The FuzzyHRT algorithm uses the Bienaymé–Chebyshev’s
inequality and fuzzy logic, along with a user-provided level of contamination to detect four
different types of outliers resulting from format inconsistencies, historical, tail, and rela-
tional anomalies within a record. The user-provided level of contamination contributes to
the uncertainty associated with the outlier detection. In addition, fuzzy logic is not suited
for the probabilistic reasoning behind the identification of anomalous cells.

The novelty of this work stands on mitigating the uncertainty associated with the
scores produced by the FuzzyHRT algorithm [23]. Two methods are developed under a
Bayesian framework. The proposed bootstrap approach explores the uncertainty associ-
ated with the output scores. The empirical likelihoods approach provides a probabilistic
reasoning behind the detection of anomalous cells. The new algorithm based on empirical
likelihoods at the cell level are developed as a better alternative to FuzzyHRT.

Furthermore, the new and improved algorithms can be applied to datasets that poten-
tially suffer from the presence of cellwise anomalies, skewed distributions (with positive
support), missing values, and multivariate relationships. The new algorithms do effectively
cope with sparse and missing data by accounting for zero inflation without removing entire
records and/or variables with missing values.

The performance of the proposed algorithms has been illustrated using NASS live-
stock and crop survey data with randomly generated anomalies. Our simulation study
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considered four different datasets, where the proposed algorithms detected the cellwise
outliers with high accuracy and robustness. Moreover, comparisons using real data with
previously reported data illustrate that the proposed approaches have generally higher
overall accuracy than the DDC method. When previously reported data are not available,
the proposed algorithms are comparable (or even equivalent) to the DDC method (as is the
case for the FuzzyHRT algorithm). However, as an advantage, our algorithms are designed
to identify cellwise outliers without dropping records or variables with many missing
values (as is the case for the DDC algorithm). Lastly, as future work, the algorithm could
be updated to produce a candidate (prediction) value for each detected cell anomaly by
leveraging administrative, structured, or unstructured data available for the whole or a
subset of the surveyed records.

Author Contributions: Conceptualization, V.B. and L.S.; Methodology, L.S. and V.B.; Software,
L.S. and L.C.; Validation, L.S.; Formal Analysis, L.C. and L.S.; Investigation, V.B., L.S. and L.C.;
Writing—Original Draft Preparation, V.B., L.S. and L.C.; Writing—Review and Editing, V.B., L.S.
and L.C.; Visualizations, L.C.; Supervision, V.B. and L.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the US Department of Agriculture’s National Agricultural
Statistics Service.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Due to the NASS Confidentiality Pledge, the data underlying this
article cannot be shared publicly. Secure access of NASS data may be obtained by agreement and
sworn status only; restrictions apply. More information is available at https://www.nass.usda.gov/
Data_and_Statistics/Special_Tabulations/index.php.

Acknowledgments: The findings and conclusions in this paper are those of the authors and should
not be construed to represent any official USDA, or US Government determination or policy. The
authors would like to thank the editors and the reviewers for providing comments that improved
this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

US United States
USDA United States Department of Agriculture
NASS National Agricultural Statistics Service
DDC Detect-Deviating-Cells
KL Kullback–Leibler
H Historical
R Relational
T Tail

References
1. Fellegi, I.P.; Holt, D. A systematic approach to automatic edit and imputation. J. Am. Stat. Assoc. 1976, 71, 17–35.
2. Box, G.E.; Tiao, G.C. A Bayesian approach to some outlier problems. Biometrika 1968, 55, 119–129.
3. Guttman, I.; Dutter, R.; Freeman, P.R. Care and handling of univariate outliers in the general linear model to detect spuriosity—A

Bayesian approach. Technometrics 1978, 20, 187–193.
4. Abraham, B.; Box, G.E. Linear models and spurious observations. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1978, 27, 131–138.
5. Freeman, P.R. On the number of outliers in data from a linear model. Trab. Estadística Investig. Oper. 1980, 31, 349–365.
6. Alqallaf, F.; Van Aelst, S.; Yohai, V.J.; Zamar, R.H. Propagation of outliers in multivariate data. Ann. Stat. 2009, 37, 311–331.
7. Agostinelli, C.; Leung, A.; Yohai, V.J.; Zamar, R.H. Robust estimation of multivariate location and scatter in the presence of

cellwise and casewise contamination. Test 2015, 24, 441–461.

https://www.nass.usda.gov/About_NASS/Confidentiality_Pledge/index.php
https://www.nass.usda.gov/Data_and_Statistics/Special_Tabulations/index.php
https://www.nass.usda.gov/Data_and_Statistics/Special_Tabulations/index.php


Stats 2024, 7 1258

8. Rousseeuw, P.J.; Van den Bossche, W. Detecting Deviating Data Cells. Technometrics 2018, 60, 135–145. https://doi.org/10.1080/
00401706.2017.1340909.

9. Knorr, E.M.; Ng, R.T.; Tucakov, V. Distance-based outliers: Algorithms and applications. VLDB J. 2000, 8, 237–253.
10. Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM

SIGMOD International Conference on Management of Data, Dallas, TX, USA, 16–18 May 2000; pp. 93–104.
11. Savitsky, T.D. Scalable approximate Bayesian inference for outlier detection under informative sampling. J. Mach. Learn. Res.

2016, 17, 1–49.
12. Smiti, A. A critical overview of outlier detection methods. Comput. Sci. Rev. 2020, 38, 100306.
13. Boukerche, A.; Zheng, L.; Alfandi, O. Outlier detection: Methods, models, and classification. ACM Comput. Surv. (CSUR) 2020,

53, 1–37.
14. Peña, D.; Guttman, I. Comparing Probabilistic Methods for Outlier Detection in Linear Models. Biometrika 1993, 80, 603–610.
15. Gao, J.; Tan, P.N. Converting output scores from outlier detection algorithms into probability estimates. In Proceedings of the

Sixth International Conference on Data Mining (ICDM’06), Hong Kong, China, 18–22 December 2006; IEEE: Piscataway, NJ, USA,
2006; pp. 212–221.

16. Chaloner, K.; Brant, R. A Bayesian approach to outlier detection and residual analysis. Biometrika 1988, 75, 651–659.
17. Varbanov, A. Bayesian approach to outlier detection in multivariate normal samples and linear models. Commun. Stat. Theory

Methods 1998, 27, 547–557.
18. Peng, F.; Dey, D.K. Bayesian analysis of outlier problems using divergence measures. Can. J. Stat. 1995, 23, 199–213.
19. Geisser, S. Discussion of a paper by G. E. P. Box. J. R. Statist. Soc. A 1980, 143, 416–417.
20. Geisser, S. Influential observations, diagnostics and discovery tests. J. Appl. Stat. 1987, 14, 133–142.
21. Geisser, S. Predictive Approaches to Discordancy Testing; Technical Report; University of Minnesota: Minneapolis, MN, USA, 1987.
22. Geisser, S. Diagnostics, Divergences and Perturbation Analysis; Technical Report; University of Minnesota: Minneapolis, MN, USA,

1989.
23. Sartore, L.; Chen, L.; van Wart, J.; Dau, A.; Bejleri, V. Identifying Anomalous Data Entries in Repeated Surveys. J. Data Sci. 2024,

22, 436–455. https://doi.org/10.6339/24-JDS1136.
24. Zwillinger, D. Standard Mathematical Tables and Formulas; CRC Press: Boca Raton, FL, USA, 2018.
25. Owen, A.B. Empirical Likelihood; Chapman and Hall/CRC: Boca Raton, FL, USA, 2001.
26. Lazar, N.A. Bayesian empirical likelihood. Biometrika 2003, 90, 319–326.
27. Kolditz, T.; Kissinger, T.; Schlegel, B.; Habich, D.; Lehner, W. Online bit flip detection for in-memory b-trees on unreliable

hardware. In Proceedings of the Tenth International Workshop on Data Management on New Hardware, Snowbird, UT, USA, 23
June 2014; pp. 1–9.

28. Das, S.; Chatterjee, A.; Ghosh, S. Investigating impact of bit-flip errors in control electronics on quantum computation. arXiv 2024
arXiv:2405.05511.

29. Hanson, M. Duality and self-duality in mathematical programming. J. Soc. Ind. Appl. Math. 1964, 12, 446–449.
30. Walk, M. Theory of Duality in Mathematical Programming; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2022; Volume 72.
31. Heydarian, M.; Doyle, T.E.; Samavi, R. MLCM: Multi-label confusion matrix. IEEE Access 2022, 10, 19083–19095.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/00401706.2017.1340909
https://doi.org/10.1080/00401706.2017.1340909
https://doi.org/10.6339/24-JDS1136

	Introduction
	Materials and Methods
	Brief Background on the FuzzyHRT Algorithm
	Problem Setup

	A Bayesian Bootstrap Approach
	A Bayesian Testing Approach Based on Empirical Likelihoods
	Simulation Study
	Evaluations
	Comparisons

	Conclusions
	References

